General principles for measuring resting membrane potential and ion concentration using fluorescent bioelectricity reporters.

نویسندگان

  • Dany S Adams
  • Michael Levin
چکیده

This overview provides the basic information needed to understand, choose, and use fluorescent bioelectricity reporters (FBRs), where bioelectricity is defined as cell processes that involve ions or ion flux. While traditional methods of measuring these characteristics are still valid and necessary, the utility of FBRs has facilitated measurement of these properties under circumstances that are not possible with microelectrodes. Specifically, these dyes can be used to achieve subcellular resolution, to measure many cells simultaneously in vivo, and to track bioelectric gradients over long time periods despite cell movements and divisions. This article covers the basic principles underlying the interpretation of the dye signals, describes essential steps for troubleshooting, optimizing data collection, analysis, and presentation, and provides compilations of information that are useful for choosing FBRs for particular projects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Measuring resting membrane potential using the fluorescent voltage reporters DiBAC4(3) and CC2-DMPE.

Slow changes in steady-state (resting) transmembrane potential (V(mem)) of non-excitable cells often encode important instructive signals controlling differentiation, proliferation, and cell:cell communication. Probing the function of such bioelectric gradients in vivo or in culture requires the ability to track V(mem), to characterize endogenous patterns of differential potential, map out isop...

متن کامل

Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients.

Significant progress in the molecular investigation of endogenous bioelectric signals during pattern formation in growing tissues has been enabled by recently developed techniques. Ion flows and voltage gradients produced by ion channels and pumps are key regulators of cell proliferation, migration, and differentiation. Now, instructive roles for bioelectrical gradients in embryogenesis, regene...

متن کامل

Optogenetics in Developmental Biology: using light to control ion flux-dependent signals in Xenopus embryos.

Developmental bioelectricity, electrical signaling among non-excitable cells, is now known to regulate proliferation, apoptosis, gene expression, and patterning during development. The extraordinary temporal and spatial resolution offered by optogenetics could revolutionize the study of bioelectricity the same way it has revolutionized neuroscience. There is, however, no guide to adapting optog...

متن کامل

On the Origin of the Membrane Potential Arising Across Densely Charged Ion Exchange Membranes: How Well Does the Teorell-Meyer-Sievers Theory Work?

A difference in salt concentration in two solutions separated by a membrane leads to an electrical potential difference across the membrane, also without applied current. A literature study is presented on proposed theories for the origin of this membrane potential (ϕm). The most well-known theoretical description is Teorell-Meyer-Sievers (TMS) theory, which we analyze and extend. Experimental ...

متن کامل

Does electromagnetic therapy meet an equivalent counterpart within the organism?

This review bundles all available new information about intrinsic electrical phenomena in many types of cells (also non-neural) and tissues and shows that exogenously applied electric fields (as DC – EF, EMF or pulsed electromagnetic fields PEMF) can couple to the endogenous electrical phenomena of the body. These endogenous fields are generated ubiquitously in all tissues via cellular ion pump...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Cold Spring Harbor protocols

دوره 2012 4  شماره 

صفحات  -

تاریخ انتشار 2012